N-oxygenation of phenethylamine to the trans-oxime by adult human liver flavin-containing monooxygenase and retroreduction of phenethylamine hydroxylamine by human liver microsomes.
نویسندگان
چکیده
The biogenic amine phenethylamine has been shown to be N-oxygenated by human flavin-containing monooxygenase (FMO) (form 3) and human liver microsomes and, to a much lesser extent, N-oxygenated by porcine liver FMO1 and porcine liver microsomes but not by rabbit FMO2. Adult human liver microsomes catalyze the NADPH-dependent N-oxygenation of phenethylamine to the corresponding trans-oxime through the intermediacy of phenethyl hydroxylamine. In addition to trans-oxime formation, phenethyl hydroxylamine is retroreduced to phenethylamine in the presence of human or porcine liver microsomes. Studies on the biochemical mechanism of N-oxygenation suggested that trans-oxime formation was dependent on the human FMO (form 3) and that retroreduction was stimulated by superoxide and dependent on a cytochrome P-450 system. These conclusions are based on studies examining the effects of incubation conditions on phenethylamine N-oxygenation and the effect of reactive oxygen species on phenethyl hydroxylamine retroreduction, respectively. The pharmacological activity of synthetic phenethyl hydroxylamine and phenethyl oxime with a number of biogenic amine receptors and transporters was examined in vitro. In all cases examined, the affinity of phenethyl hydroxylamine and the corresponding oxime for a biogenic transporter or receptors was very poor. The results suggest that the biogenic amine phenethylamine is efficiently sequentially N-oxygenated in the presence of human liver microsomes or cDNA-expressed FMO (form 3) to phenethyl hydroxylamine and then to oximes that are pharmacologically inactive and serve to terminate biological activity. N-Oxygenation of phenethylamine to the corresponding trans-oxime is a detoxication process that abrogates pharmacological activity.
منابع مشابه
N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): role in bioactivation and detoxication.
(+)- And (-)-amphetamine and methamphetamine were N-oxygenated by the cDNA expressed adult human flavin-containing monooxygenase form 3 (FMO3), their corresponding hydroxylamines. Two major polymorphic forms of human FMO3 were studied, and the results suggested preferential N-oxygenation by only one of the two enzymes. Chemically synthesized (+/-)-amphetamine hydroxylamine was also a substrate ...
متن کاملCharacterization of two human flavin-containing monooxygenase (form 3) enzymes expressed in Escherichia coli as maltose binding protein fusions.
To examine the possibility for drug metabolism polymorphism, adult human flavin-containing monooxygenases (form 3) (EC 1.14.13.8) that differ at one amino acid were expressed in Escherichia coli as maltose binding protein fusions. The cDNA that was first reported during the cloning of adult human flavin-containing monooxygenase was designated the wild type lys158 enzyme. A second cDNA has been ...
متن کاملMetabolic activation and DNA adduct formation of Benzo(a) pyrene by adult and newborn rat skin and liver microsomes
Benzo(a) pyrene is a carcinigen polycyclic aromatic hydrocarbon which diffuses into the environment from combustion of organic meterials.based on various epidemiological evidences it is related to lung,skin and liver cancer.mutagenicity,and immunosuppressivety are among important biological effects of Benzo(a) pyrene.after absorbtion and distribution in the body,it undergoes epoxidation by cyto...
متن کاملMarmoset Flavin-Containing Monooxygenase 3 in the Liver Is a Major Benzydamine and Sulindac Sulfide Oxygenase.
Common marmosets (Callithrix jacchus) are potentially primate models for preclinical drug metabolism studies because there are similarities in the molecular characteristics of cytochrome P450 enzymes between this species and humans. However, characterization of non-cytochrome P450 enzymes has not been clarified in marmosets. Here, we report characterization of flavin-containing monooxygenases F...
متن کاملCyclic conversion of the novel Src kinase inhibitor [7-(2,6-dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) and Its N-oxide metabolite by flavin-containing monoxygenases and cytochrome P450 reductase.
[7-(2,6-Dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) is a novel multi-targeted Src family kinase inhibitor with demonstrated anticancer activity in preclinical species. Potent kinase inhibition is associated with TG100435 and its major N-oxide metabolite [7-(2,6-dichlorophenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-{4-[2-(1-oxy-pyrrolid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 282 3 شماره
صفحات -
تاریخ انتشار 1997